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Asymptotic Laws for the Winding Angles of Planar 
Brownian Motion 
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Using constrained path integrals, we study the winding angle distribution of a 
two-dimensional Brownian motion around a given point. By a careful analysis 
of the spectral properties of some Schr6dinger-like Hamiltonians, we obtain a 
generalization of the Messulam Yor law. Various limiting cases are considered. 
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Much work has been devoted to the problem of the winding properties of 
random walks or Brownian paths. One of the first motivations was to 
capture some simple features of polymer entanglements. (1~ A related 
problem arises in the study of magnetic flux line entanglements at the sur- 
face of the Sun. (2) More recently, the winding properties of a long polymer 
chain around an attractive rigid rod were considered in relation with the 
localization transition exhibited by this system. (3) For  a very long chain, it 
is often convenient to approximate the random walk by a diffusion process. 
However, as already emphasized in ref. 4, this limit is precisely not at all 
trivial as far as the winding properties are concerned. 

Consider, for instance, the two-dimensional Brownian motion (BM) 
on the punctured plane P - { O } .  The total angle ~b wound around O during 
the time (or length) t is asymptotically distributed as a Cauchy law: (5~ 

26 ) 1 1 
lim_ P.M x =i-gS, t - ~ 1 + x 2  (1) 
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whereas the same winding angle for a random walk (RW) is governed 
asymptotically by a law whose moments are all finite: (6) 

20 ) 1 
l i m  Pew x = i -~ '  t = 2 cosh(rcx/2) (2) 

The link between these two results can be understood through the 
work of Messulam and Yor, (7) who have refined Spitzer's law (1) by 
splitting the total winding angle ~b into a big winding angle ~b + and a small 
winding angle ~b . These are defined to be the angles wound around the 
origin by the Brownian particle when it is respectively outside or inside the 
unit disk. The joint law of the characteristic function is asymptotically 
given by (7) 

limo~ E exp i2+ 21n(t-----~+i)~_ 2]-n~-ti = c o s h 2 +  +(12_] /2+)s inh2+  (3) 

Fourier transformation now shows that the asymptotic law for the big 
winding angle ~b + 

( +) 2q~ t , t = ilim_ P~M x + - I n  2 cosh(rtx +/2) 
(4) 

is the same law as the one that gives the total angle for the random walk 
(2). It is thus the small winding angle ~b _ in the neighborhood of the origin 
that is responsible for the huge difference between Brownian motion and 
random walk; ~b_ contributes to the asymptotic law of ~b only in the 
continuous limit and here makes all the moments infinite. Of course, if one 
considers a diffusion process excluding an area around the origin, one 
recovers the big winding law. (8~ It is also interesting to point out that other 
mecanisms such as self-avoidance can produce finite moments and change 
the scaling factors. ~ lo) 

In this communication our purpose is to generalize the Messulam-Yor 
law by dividing the plane into three concentric zones around the origin. 
One of our aims is to clarify the role played by the intermediate zone and 
to get a better understanding of the Brownian motion winding properties. 
In particular, our approach clarifies the relationship between the occur- 
rence of a scaling variable (fb/f(t)) in the long-time asymptotic regime and 
the spectral properties at low energy of some associated Schr6dinger 
operators. 
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To begin, let us first fix our notations and conventions. It is 
convenient to divide the plane into three concentric zones as follows: 

1. r < R 1 .  

2. R I < r < R  2. 

3. R z < r .  

Consider a Brownian particle starting from the point ro at time t = 0. 
The probability density P(r, t f] ro, 0) to be at the point r at the time t 
admits the following functional representation: 

= ,1 (dr)'d  j 
(5) 

In these units the diffusion constant is D = 1/2. 
We define q~(t) as the angle wound around the origin O by the 

Brownian particle when it is inside the e-zone between the times 0 and t: 

cP=(t)= f~ ~ Z~,(r(~)) d'c (6) 

where r ( t )  and q~(t) are the polar coordinates of the Brownian particle, and 
X~ is the indicatrix function of the e-zone: 

z , ( r )  = o ( R ,  - r) 

z2 ( r )  = O(R2 - r) --  O(R  1 - r) 

z3 ( r )  = O(r -- R2) 

Finally, we introduce the joint law of the three winding angles regard- 
less of the final point r, which is the law we are interested in here: 

P(~, ,  ~ ,  ~ ,  t II to, o) 

= f d2r f,i(~i~i ~ [Dr(r ) ]  exp [ - ( ' l f d r ' ] 2 ]  ~ [ I  c~(r ~ ~  2 \ d ~ J  J (7) 

A convenient way to impose the constraints in the path integral is to 
set 

(8) 
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The characteristic function for the three winding angles at the time t is 
therefore 

E(expli~2~O~],t [1 ro, 0) 

~r(,,=r (dr~ 2- ~2~z~(r(z))]dz} 
~,(o) = ,o \ dr ,]  dz  

(9) 

The action appearing in this path integral is the action of a fictitious 
particle of unit mass and unit charge moving in the plane and coupled to 
a vortexlike vector potential: (H) 

A =1- Z 2~z~(r) u~ (10) 
F 

where u~o is the unit orthoradial vector. The corresponding Hamiltonian is 
thus given by 

1 1 0 - i E 2 ~ z ~ ( r )  (11) H = ~ ( - i V - A )  2 = -  8r(r 8r)+ 7 ~ 

The characteristic function can thus be expressed in terms of the Green's 
function of H integrated over the endpoint: 

E(exp[i~2~O~],t ]lro, O)=id2r<rlexp(-tH)]ro> (12) 

We expand the Green's function in terms of a complete set of eigenstates 
of H and integrate over the endpoint r. A partial wave analysis shows that 
the only states that contribute to the characteristic function have zero 
angular momentum around O. Since the spectrum is purely continuous, 
they satisfy 

[-!d(rd)+(Z~2rZ~(r).)2]tPk(r;2~ 

The characteristic function therefore reads 

E(expli~2~O~l,t I1 ro, O) 
cr 

= rdr  

, /~2, ' ~ 3 ) =  k2~k(r; 21, 22, 23) 

(13) 

kdk ~k(r;21,)~2,23) ~k(ro;21; 22,23)exp(--tk---2) 
(14) 
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The regular solution of (13) inside each zone can be expressed in terms of 
Bessel functions: 

r<Rl :  Tk(r;21,22,23)=aJtx,l(kr) 

R1 < r < R2: Tk(r; 21, 22, 23) = fi[Jix21(kr) - (tan A) Yl~o21(kr)] 

R 2 < r: gtk(r; 21, 22, 23) =cos(b)[Jlz31(kr)- (tan 6) Yi;.31(kr)] 

The continuity of gt and its derivative at r = R I and r = R2 allows us to 
compute ~, fl, A, and 6 in terms of k, R1, R2, 21, 22, and 23. This gives 
quite complicated expressions which are not very illuminating. 

In practice, we are only interested in the asymptotic limit t--* o0, for 
which one expects that only the bottom of the spectrum will contribute. 
The statement that there exists in this limit an asymptotic law, with an 
a priori unknown scaling function f~(t), is the statement that 

tli+mooE(exp[i~2=~t)},tNro, O) (15) 

is independent of t and r o. In order to construct the scaling functions, it is 
convenient to set 

k 2,  

The charactertistic function then reads 

.(exp [, O) 
,o ,o ( 2, 2,  x , , ~  

(yro. 2, , 2, ~ 3  
• gxYi'/7 \x/7' f,(t) f2(t)' f3(t)] exp (-Y-~2 ) 

The expansion of the Bessel functions of small arguments 

( yro ,limoo J~ t ~ , ]  
(yro~ lirnoo Yv \ x/7 ) 

...( yro "~ ~ ( yro "~ 
~2 , / -;;  "exp -~  In ~2 W-i) 

•  yro V ( .o  ~-V-1 
~.vL\2 , / - i ) - t~)  A 

(16) 



438 Comtet et  al. 

together with the expansion of the coefficients c~, fl, A, and 6 finally gives 

aim E(expIiV2z_, ~ q~ ] t l lro,  0)  
,-+ ~ ~ L ( t ) J  

1 
(17) 

cosh 23 + [(1211 + 22)/23] sinh 23 

with the scaling functions 

fl(t) = f3(t) = 2 In t 

f2(t)=(~lnt)l/2(lnR2"]l/2-~j 
This is ,the central result of this note. 

We now consider this formula in various limiting cases. 

1. 21 = 22 = 0 gives the distribution of the big winding angle: 

Therefore 

,~limco E(expli23~@t]t' II to, 0)  - coshl/~3 (18) 

lira ~,(3) {,. 2~b3 ) 1 
,-, oo --BM \~3 = i -~ '  t = 2 coshl-(rc/2)x3] (19) 

which is the same distribution as the one found by Belisle (6) on a lattice. 

2. 2 2 = 2 3 = 0 gives the distribution of the small winding angle: 

( i  < ) 1 (20, lim E exp i21 In t J '  t II to, 0 - 1 + 1211 

All the even moments are infinite. 

3. 21 = 2 3  = 0 gives the distribution of the middle winding angle: 

( [ f2@t)l ) 1 lim E exp i22 t l lro,  0 - (21) 

Therefore 

~2 ) 1 
limo o(2) X 2 t = exp(--Ix2[) --,,M - A ( t ) '  

(22) 

An interesting feature of these results is that the asymptotic laws for 
the big and small winding angles do not depend on the values of R1 and 
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R2. What really matters are the excursions of the paths at infinity or in the 
neighborhood of the origin. The expression of the scaling function f2(t) 
shows that the excursions in the intermediate region give a subleading 
contribution. This is also apparent when one computes the distribution of 
the total angle 0~ = ~1 + @2 7!- ~3: 

( I ) 1 exp(-[21) (23) 2~b] t[J r o = 
lim E exp i21ntj ,  cosh2+sinh[2J t ~ o o  

To conclude, let us show that (22) can be obtained in a different way 
for a thin intermediate zone: 

e e 
R1 = R - ~ ,  R 2 = R + ~ ;  e~R (24) 

Assume that the Brownian particle spends a time T inside this region. The 
winding angle ql 2 is distributed according to the conditional law: 

R exp ( - R 2 ~  
Pr(~b2)- (27t T) m -2-T-} (25) 

Since the occupation time T is a random variable satisfying the Kallianpur- 
Robbins law (see, for instance, Pitman and Yor (7)) 

PK(T, t) = - -  exp (26) eR In t eR In i 

Eqs. (25) and (26) lead to the following ~b a distribution: 

/ R \~/2 [ (2R~/2]  
P((~z, t)= fo dTPx(T, t) Pr(~b2)=~2--e-q~nt ) exp -t~2[ \elntj  j 

(27) 

i.e., precisely (22) in the limit (24). 
As a final conclusion, it is interesting to point out that this method 

can easily be generalized to more general two-dimensional systems. In 
particular, the influence of a drift on the scaling properties can be studied 
along similar lines. (~2) 
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